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Alzheimer's Disease (AD) is currently attracting much attention in elders' care. As the increasing avail-
ability of massive clinical diagnosis data, especially the medical images of brain scan, it is highly sig-
nificant to precisely identify and predict the potential AD's progression based on the knowledge in the
diagnosis data. In this paper, we follow a novel sequential learning framework to model the disease
progression for AD patients' care. Different from the conventional approaches using only initial or static
diagnosis data to model the disease progression for different durations, we design a score-involved
approach and make use of the sequential diagnosis information in different disease stages to jointly
simulate the disease progression. The actual clinical scores are utilized in progress to make the prediction
more pertinent and reliable. We examined our approach by extensive experiments on the clinical data
provided by the Alzheimer's Disease Neuroimaging Initiative (ADNI). The results indicate that the pro-
posed approach is more effective to simulate and predict the disease progression compared with the
existing methods.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer's Disease (AD) is a kind of presenile dementia,
which is the common neurodegenerative disease appearing in the
elders over 65 years old, with the symptoms of memory loss and
disorder of central nervous system, and potentially resulting in
death [1]. It has been reported that there are over 26 million AD
patients all over the world by 2011, and this number will go
beyond 114 million by 2050 [2,3]. Therefore, the timely AD diag-
nosis and treatment are of high significance and have attracted
much concern recently, and researchers have taken efforts to
simulate and predict the disease progression to benefit the
elders' care.

With the increasing availability of medical diagnosis data [4]
and the development of image processing [5], machine learning
(J. Zhu),

btained from the Alzheimers
ni.loni.usc.edu). As such, the
sign and implementation of
n analysis or writing of this
found at http://adni.loni.usc.
ledgement_List.pdf
methods have been engaging the AD pattern analysis and pro-
gression prediction based on the massive diagnosis data, especially
the medical images of brain scan, including Magnetic Resonance
Imaging (MRI) and Positron Emission Tomography (PET). These
neuroimaging data are popularly used to understand the AD pro-
gression and identify the diagnosis of AD and its early stage, Mild
Cognitive Impairment (MCI). Our work will focus on the challenges
and innovations in neuroimaging analysis.

There are several research directions for analyzing the AD
progression based on the medical image data. The first one starts
from the image processing direction and focuses on the volume of
different brain regions [6]. Guo et al. [7] discovered the relation-
ship between the AD progression and the decrease of gray matter
volume in the hippocampus, parahippocampal gyrus and insula
and superior temporal gyrus. However, such methods only limit
the applications within individual levels and it is hard to discover
more general rules to identify the progression. Besides this, many
works propose to develop classification models to distinguish
different disease status [8–10], and determine the clinically
defined categories of the subjects [11,12], such as AD, MCI and
healthy Normal Control (NC). Survival model has also been applied
to simulate the AD progression from the statistical point of view
[13,14]. Recently, as the clinical scores are commonly accepted to
indicate the disease status, regression model has been more
popularly investigated to predict the AD patients' status in terms
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of clinical scores, such as Mini-Mental State Examination (MMSE)
or Alzheimer's Disease Assessment Scale-Cognitive subscale
(ADAS-Cog), based on the original diagnosis data [15–17]. In the
regression model research, since the high-dimensional neuro-
image data are involved to generate the features, various methods
have been proposed to effectively improve the performance, such
as dimension reduction technique [18,19] and feature selection
technique [20–23]. Specifically, Zhang et al. [24] proposed to
address both disease diagnosis and clinical score prediction
simultaneously, and combine these two tasks in a unified frame-
work based on the correlated feature selection, which is also called
Joint Regression and Classification (JRC) problem [25]. From the
prediction effectiveness point of view, most methods of the
regression model aim to predict the target score at a specific time
point, such as one year [18], while more prediction scores at dif-
ferent time points are desired for a better prediction performance.

To address this problem, multi-task learning techniques [26]
have been introduced into the regression model to simulate the
disease progression and predict the clinical scores at different time
points [27,28]. Multi-task learning aims to improve the perfor-
mance of regression model building by utilizing the intrinsic
commonality among different target tasks. The shared repre-
sentation in parallel learning can help individual tasked be learned
better. It has been demonstrated that multi-task learning is
especially effective when the number of subjects is small and the
number of input features is large, which is the case of AD simu-
lation. The essential issue of multi-task learning is to discover how
the tasks are related and identify the learning model. To achieve
this, Zhou et al. [27,28] model the problem as longitudinal disease
progression and the predictions of a patient's disease status at
different time points are treated as regression tasks. These pre-
diction tasks for different time points are performed simulta-
neously and the temporal smoothness across prediction models
can be captured. Specifically, their work develop formulations that
allow the simultaneous selection of a common set of biomarkers
for multiple time points and specific sets of biomarkers for dif-
ferent time points, so as to capture the temporal patterns of the
biomarkers in disease progression.

The approaches based on multi-task learning model tactfully
fuse the regression tasks for different time durations into the
uniformed framework. Although different kinds of loss functions
have been employed to refine the prediction model, they still have
the following two drawbacks. Firstly, most works only learn the
regression model based on the subject features generated at the
baseline time point, and all the prediction analysis for the fol-
lowing time points is derived from the baseline information.
Therefore, if the subjects for model learning only cover limited
status of AD progression, e.g., the early stage, the regression model
will be inaccurate to describe the progression. Secondly, these
approaches fail to use the evolving feature information in progress,
which can be also utilized as feedback to enhance the regression
model. For a long term task, which is the case of the engaged
problem, the actual evolution of the subjects in progress can
increase the uncertainty for prediction and should not be ignored.

Therefore, we propose a sequential data analysis mechanism to
perform the regression model for simulating the AD progression,
and the feedback concept is involved in the model to improve the
prediction performance. In our work, we will effectively make use
of the intermediate information during the AD patients' therapy,
which includes the consecutive brain scan images and corre-
sponding clinical scores. Based on these information, our work will
jointly analyze the feature data in different time points, and the
existing clinical scores will be embedded into the model to facil-
itate the disease simulation and the clinical score prediction. The
relationship is established by building a fused sparse Lasso for-
mulation [29], which incorporates the temporal smoothness.
Generally speaking, our framework focuses more on the solu-
tion suitable for the specific application in medical care. It explores
the information and resources available in practical conditions,
and suggests the regression model accordingly. The idea of
sequential analysis is an effective simulating approach for the
continuous medical monitoring, as well as other similar scenarios.

To evaluate the performance of our approach, we conducted
extensive experimental studies on the clinical image data. Data
used in the preparation of this paper were obtained from the
Alzheimers Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public–
private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alz-
heimers disease (AD). The results evidently demonstrate the
effectiveness and accuracy of our proposed solutions.
2. Regression by sequential diagnosis data analysis

In this section, we will interpret our solutions in detail. We will
introduce the basic concepts and notations first, and then explain
the regression model building by sequential data analysis.

2.1. Preliminaries

In the AD caring, the target patients will receive regular MRI or
PET scan in fixed time interval, and their cognitive scores will be
measured accordingly. Based on the acquired medical image data,
the regression object aims to predict the cognitive score at specific
time points.

Assume that a patient's brain-scan image can be processed into
d-dimensional feature data, and for this patient' brain-scan
records at all time points, we can collect all the feature data
fx1; x2;…; xng. Here, for each sample xtARd, there is a corre-
sponding clinical score yt (MMSE or ADAS-Cog) measured at the
same time. In our test corpora, we have the record collection for all
patients under monitoring. The regression model simulates the
relationship between the collected feature data and the corre-
sponding target clinical measures, so as to predict the patient's
potential clinical score at the specific data point in future.

2.2. Regression model building

In this part, we will introduce three different approaches to
build the feasible regression model based on sequential analysis.
We will focus on the analysis of one patient to interpret the model
building.

2.2.1. Baseline sequential prediction
The first model predicts the target clinical scores at different

time points based on the baseline observation. When the patient
takes the first brain scan, we can have his initial feature observa-
tion x1, and we predict his future clinical scores yt ðt41Þ based on
x1. Importantly, when the actual score yt is available, we embed it
into the baseline feature data to facilitate the prediction of ytþ1.

More specifically, assume that ~yt is the prediction (or estima-
tion) of yt, and the regression model can be defined as given the
baseline observation x1, and the actual clinical score yt ðtZ1Þ,
predict the estimation for the clinical score at next time point
~ytþ1. Such model is called Baseline Sequential Prediction (BSP).

The model of BSP is demonstrated in Fig. 1. From the figure, we
can see that at each time point, the clinical score is predicted using



Fig. 1. The demonstration of baseline sequential prediction.

Fig. 2. The demonstration of general sequential prediction.

Fig. 3. The demonstration of incrementally sequential prediction.
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the information of the previously recorded score and the initial
observed sample. The motivation is, the existing clinical score can
provide certain information about the current status of the patient,
so it can facilitate to make more precise prediction for the fol-
lowing progression.

Formally, we denote the feature data matrix by X¼ ½x1;…;

xN�T ARN�ðdþ1Þ. Here each xiARdþ1 is the extension of baseline
feature data with one more dimension by embedding the score
record yi. Note that we still use xi to denote the feature data when
no conflict occurs. We also maintain a target matrix
Y¼ ½y1;…; yN �T ARN . Here yi stands for the clinical score at the
next time point of xi. We denote W¼ ½w1;…;wdþ1�T ARdþ1 as the
weight matrix, and the loss function can be defined as

LbspðWÞ ¼ JXW�Y J2F : ð1Þ

Considering the regularization term, we apply the sparse group
lasso [29,30], and the proposed formulation can be expressed as
solving the following optimization problem:

min
W

LbspðWÞþλ1 JW J1þλ2 JW J2;1; ð2Þ

where λ1 and λ2 are regularization parameters. The ℓ2;1-norm is
for feature selection, i.e., after finding the optimal solution, we will
find some zero (close to zero) values in W, whose corresponding
features are not relevant in predicting the clinical scores. It has
been proved that the optimization problem can be solved by the
accelerated gradient method (AGM) [31], and we employ the
theoretical results of [28] to solve the result.

2.2.2. General sequential prediction
The next model has more general sense, which predicts the

target clinical scores at different time points based on the instant
observations in progress. Whenever the patient takes a brain scan,
we can immediately obtain this feature observation xt , and we
predict the clinical scores ytþ1 based on xt . Here we note that the
corresponding score yt is also available, so we embed it into xt to
facilitate the prediction of ytþ1. By this mean, the regression
model can be defined as given the feature observation xt , and the
actual clinical score yt, predict the estimation for the clinical score
at next time point ~ytþ1. Such model is called General Sequential
Prediction (GSP).

The model of GSP is demonstrated in Fig. 2. The figure shows
that at each time point, the clinical score is predicted using the
information of the previously observed sample and recorded score.
Different from the BSP, GSP applies the instant observations that
deliver the updated and inherent information reflecting the
patient's current health status, which helps to make more precise
prediction for the following progression.

The formulation for GSP model is similar to that of BSP, and the
difference is that xiARdþ1 is the extension of instant feature data
other than the baseline data. We still apply sparse group lasso for
regularization in this model.

2.2.3. Incrementally sequential prediction
Finally, we introduce the concept of incrementally sequential

prediction (ISP). For the time sequence f1;2;…;ng, fx1; x2;…; xng
are the series of consecutive feature observations. The incremen-
tally sequential prediction model can be defined as given con-
secutive observations xt�1, xt and the previous clinical score yt�1,
predict the estimation for current clinical score ~yt .

The incrementally sequential prediction model is demonstrated
in Fig. 3. From the figure, we can see that at each time point, the
clinical score is predicted using the information of the previously
observed sample and the current observation. The motivation of
such a model is based on the following consideration: usually
speaking, the initial status of a patient is uncertain, and also the
time interval between two consecutive observations can be var-
ious, so the incremental prediction is more suitable in such
situation. According to the model, the prediction in health caring
will not be limited for single time point.

We collectively use Z¼ ½z1;…; zN �T ARN�2d to denote all feature
pairs of all patient samples as data matrix. Here each ziAR2d is the
fusion of a consecutive feature pair fxt�1; xtg, with
zið2j�1Þ ¼ xt�1ðjÞ, and zið2jÞ ¼ xtðjÞ, 8 jA ½1;d�. We also maintain a
target matrix Y¼ ½y1;…; yN �T ARN , and a reference score matrix
V¼ ½v1;…; vN �T ARN . Here vi and yi stand for the clinical scores of
xt�1 and xt , respectively. We denote W¼ ½w1;…;w2d�T AR2d as the
weight matrix, and the loss function can be defined as

LispðWÞ ¼ JVþZW�Y J2F : ð3Þ

For the regularization term, in our model, the prediction is
made based on the information of consecutively observed feature
data, so we can assume that the difference between the target
prediction and the previously recorded reference score is small,
which is so-called temporal smoothness [27]. Therefore, besides
group sparse lasso, we employ the fused Lasso penalty to incor-
porate the temporal smoothness. Formally, the proposed for-
mulation can be expressed as solving the following optimization
problem:

min
W

LispðWÞþλ1 JW J1þλ2 JRUT J1þλ3 JW J2;1; ð4Þ
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where UARd�2 is derived from W with Ui;1 ¼W2i�1 and
Ui;2 ¼W2i, 8 iA ½1; d�; R¼ ½1; �1�.

By employing ISP analysis, the incrementally temporal infor-
mation can be incorporated into the model, and the relationship
among consecutive observations can be discovered to improve the
prediction performance. With our proposed model, we can con-
tinuously predict a patient's disease progress and take the relevant
medical treat accordingly.
3. Experiments

In this section, we will report the empirical evaluation of our
proposed framework in modeling AD progression. The experi-
ments will be conducted on the dataset collected from the Alz-
heimer's Disease Neuroimaging Initiative (ADNI). We will compare
the performance of simulating and predicting the disease pro-
gression with the baseline approach and the latest solution based
on multi-task learning framework.

3.1. Dataset description

The ADNI project is designed to collect the serial of MRI, PET
and other clinical assessment scores to measure the progression of
selected subjects, including Alzheimers Disease patients (AD), Mild
Cognitive Impairment patients (MCI) and normal controls (NC),
and the subjects will be observed repeatedly and continuously
over a 6-month or 1-year interval. For each observation, the MRI
and PET scans will be collected, as well as other corresponding
measurements, e.g., clinical scores such as MMSE and ADAS-Cog.
In our work, we use the MRI scans to generate feature data, which
are obtained from over 700 subjects. Five types of MRI features are
used in the work: white matter parcellation volume (Vol.WM.),
cortical parcellation volume (Vol.C.), surface area (Surf. Area),
cortical thickness average (CTA) and cortical thickness standard
deviation (CTStd). The date when the patient receives the MRI
scans for the first time is called baseline, and the time points of the
following observations are denoted by the duration starting from
the baseline. For example,“M06” means the screening taken at the
time point 6 months after the first visit. All the subjects are under
the repeated observations for up to 48 months. Table 1 records the
dimensionality of MRI feature, as well as the sample sizes available
at different time points. Notice that some patients may quit the
monitoring and examination after a certain period, so there are
some missing records, so the missing value estimation techniques
[32] can be applied here. However, we are not expecting all
patients have complete records, but every consecutive partial
records can contribute the model building.

3.2. Prediction performance

In the experiments, we will compare our proposed models with
some existing approaches. The baseline approach is the basic
regression model simulating the relationship between MRI feature
and its corresponding clinical score. The second approach in
comparison is the Convex Fused Sparse Group Lasso (cFSGL) based
on multi-task learning [28]. The performance is evaluated by the
Table 1
The feature dimensionality of MRI scans and the sample size available at different
time points in the experiments.

Target score BS M06 M12 M24 M36 M48 Dim

MMSE 740 641 588 452 236 57 327
ADAS-Cog 740 641 588 452 236 57 327
prediction of MMSE and ADAS-Cog scores. For each target score,
we build the regression model, and the model parameters are
determined by 10-fold cross validation. To measure the regression
performance, we employ the mean squared error (MSE) calculated
for the score prediction at different time points, and weighted
correlation coefficient (R-value) as suggested in [18,28].

The comparison results between different approaches are listed
in Table 2. Here our approaches are not applicable for “M06MSE”
of MMSE score, because there are no baseline score records. From
the table we can observe that our approaches can significantly
improve the prediction results over those achieved by basic model
and cFSGL, and the correlation can be improved over 0.85. Gen-
erally speaking, the prediction error of cFSGL is lower than basic
model because the shared representation in parallel learning can
help individual tasked be learned better. However, the sequential
prediction can further improve the performance due to the feed-
back from the intermediate information. More specifically, the
prediction error will increase for the records at “M24”, and this is
because the status of patients in monitoring will become sig-
nificantly worse after “M12”, so the prediction error will increase
accordingly, since the basic assumption for all models is the
temporal smoothness. The performance for MMSE and ADAS-Cog
are also different because of the different distribution of the
patients records. We can observe the obvious increase of predic-
tion error when processing ADAS-Cog scores. When comparing the
distributions of two different scores, we can observe that the
ADAS-Cog has much wider range and higher fluctuation along the
recording period, and this is the reason bringing the high predic-
tion error. We will provide further error analysis in the
following part.

3.3. Error analysis: effect of patients' status

Based on the overall prediction comparison, we further provide
an error analysis to discover the reason that influences the pre-
diction performance. For each time point, we divide the patient
objects into different ranges (AD, MCI and NC) based on their
actual clinical scores (target scores), and compare the prediction
errors of different approaches, so as to examine the effect of the
patients' actual scores, i.e., the patients' actual status in AD
progression.

Figs. 4 and 5 show the error analysis for MMSE and ADAS-Cog
prediction respectively, and the absolute prediction errors for
patients of different cognitive scores are summarized at different
time points. From the figures, we can conclude that, at different
time points, the major prediction error is produced when pre-
dicting those patients with bad cognitive measurement (For MMSE
score, ½0;20� means AD patients; for ADAS-Cog score, ½20;70�
means AD patients). For those with better cognitive scores (MCI or
Normal patients), since their status is relatively stable, the pre-
diction error is significantly improved. Overall speaking, our
approaches can achieve better performance at almost all score
ranges and all time periods. At last, the same statement can be
concluded that the prediction error for MMSE score is much lower
than ADAS-Cog score, and the major cause is those records of AD
patients.
4. Conclusions

This work addresses the significant problem of simulating and
predicting AD progression for elders' care. Based on the existing
works using multi-task learning technique to model the AD pro-
gression, we further introduce a sequential data analysis mechanism
for continuous clinical score prediction to improve the modeling and
regression performance. The basic disease progression model is built



Table 2
Comparison of different approaches on MMSE and ADAS-Cog prediction using MRI features, in terms of average correlation coefficient (R) and mean squared error (MSE) for
each time point.

Comparison item Basic cFSGL BSP GSP ISP

Target:MMSE
R 0:69070:037 0:71970:039 0:84870:040 0:85370:034 0:86270:022
M06 MSE 7:84771:731 6:84371:400 NA NA NA
M12 MSE 10:03372:235 8:87672:371 5:78071:330 5:84771:577 5:21471:016
M24 MSE 11:52073:279 12:73376:243 6:60172:121 6:49772:386 6:53672:585
M36 MSE 9:90073:710 9:33172:582 5:01571:682 5:01572:878 4:75472:838
Target:ADAS-Cog
R 0:70770:040 0:77670:025 0:87270:017 0:87370:024 0:87470:016
M06 MSE 33:0579:52 30:1578:20 15:9273:24 15:9974:05 15:8173:48
M12 MSE 36:67713:61 31:9276:30 17:0172:96 17:1473:75 17:2073:40
M24 MSE 50:02717:02 48:63716:40 23:8374:73 23:6277:40 22:9577:98
M36 MSE 35:81713:33 38:19713:80 16:7578:45 16:0975:37 16:4374:54
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Fig. 4. Error analysis for MMSE prediction at different time points.
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by a fused sparse group lasso formulation, which embeds the inter-
mediate feature observation and actual score information for incre-
mental model training, and also incorporates the temporal smooth-
ness. In the simulation, we continuously obtain the actual diagnosis
data and the clinical scores of selected subjects at different time
points to contribute the model building, so as to enhance the model
learning and increase the accuracy of prediction. The effectiveness of
the proposed progression model is evaluated by the experimental
studies on the famous data sets collected from the Alzheimers Dis-
ease Neuroimaging Initiative (ADNI). The results show that the pro-
posed regression model is more effective than the baseline regres-
sion model and the one based on multi-task learning formulation for
simulating the disease progression.
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