
Available online at www.sciencedirect.com
www.elsevier.com/locate/comcom

Computer Communications 31 (2008) 58–72
Processing of massive audit data streams for real-time
anomaly intrusion detection

Wei Wang a,*, Xiaohong Guan a,b, Xiangliang Zhang a

a State Key Laboratory for Manufacturing Systems (SKLMS) and MOE Key Lab for Intelligent Networks and Network Security

(KLINNS), Xi’an Jiaotong University, Xi’an 710049, China
b Center for Intelligent and Networked Systems, Tsinghua University, Beijing 100080, China

Received 26 October 2006; accepted 2 October 2007
Available online 13 October 2007
Abstract

Intrusion detection is an important technique in the defense-in-depth network security framework. Most current intrusion detection
models lack the ability to process massive audit data streams for real-time anomaly detection. In this paper, we present an effective anom-
aly intrusion detection model based on Principal Component Analysis (PCA). The model is more suitable for high speed processing of
massive data streams in real-time from various data sources by considering the frequency property of audit events than by use of the
transition property or the correlation property. It can serve as a general framework that a practical Intrusion Detection Systems
(IDS) can be implemented in various computing environments. In this method, a multi-pronged anomaly detection model is used to mon-
itor various computer system and network behaviors. Three sources of data, system call data from the University of New Mexico (lpr)
and from KLINNS Lab of Xi’an Jiaotong University (ftp), shell command data from AT&T Research laboratory, and network data
from MIT Lincoln Lab, are used to validate the model and the method. The frequencies of individual system calls generated by one
process and of individual commands embedded in one command block as well as features extracted in one network connection are trans-
formed into an input data vector. Our method is employed to reduce the high dimensional data vectors and thus the detection is handled
in a lower dimension with high efficiency and low use of system resources. The distance between a vector and its reconstruction in the
reduced subspace is used for anomaly detection. Empirical results show that our model is promising in terms of detection accuracy and
computational efficiency, and thus amenable for real-time intrusion detection.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Intrusion detection; Principal Component Analysis; Hidden Markov models; Network security; Data streams
1. Introduction

Network-borne attacks are currently major threats to
information security. With the rapid growth of unautho-
rized activities on the network, Intrusion Detection Sys-
tems (IDS) have become very important. Intrusion
detection is a technology for detecting hostile attacks
against computer network systems, both from outside
and inside. In general, the techniques for intrusion detec-
0140-3664/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.comcom.2007.10.010

* Corresponding author. Tel.: +33 2 99127045.
E-mail addresses: wei.wang.email@gmail.com (W. Wang), xhguan@

tsinghua.edu.cn (X. Guan), xlzhang@lri.fr (X. Zhang).
tion fall into two major categories depending on the mod-
eling methods used: signature-based detection and anomaly
detection. Signature-based detection identifies malicious
behavior by matching it against predefined description of
attacks, or signatures. Although signature-based detection
is effective against known intrusion types, it cannot detect
new attacks that were not predefined. Anomaly detection,
on the other hand, defines a normal profile of a subject’s
normal activities (a normal profile) and attempts to identify
any unacceptable deviation as possibly the result of an
attack. Anomaly detection may be able to detect new
attacks. However, it may also cause a significant number
of false alarms because the normal behavior varies widely

mailto:wei.wang.email@gmail.com
mailto:xhguan@ tsinghua.edu.cn
mailto:xhguan@ tsinghua.edu.cn
mailto:xlzhang@lri.fr

W. Wang et al. / Computer Communications 31 (2008) 58–72 59
and obtaining complete descriptions of normal behavior is
often difficult.

Anomaly detection has been an active research area for
more than a decade since it was originally proposed by
Denning [1]. Many methods have been developed for
anomaly detection, such as machine learning, data mining,
neural networks, statistical methodology. There are multi-
ple prongs that anomaly detection models can be built
upon in real computer network systems. Many sources of
data are then used for anomaly detection, including shell
commands, audit events, keystroke records, system calls
and network packets. Early studies [2–4] on anomaly detec-
tion mainly focused on modeling system or user behavior
from monitored system log or accounting log data, includ-
ing CPU usage, time of login, duration of user sessions and
names of files accessed. Schonlau and Theus [5] attempts to
detect masquerades by building normal user behavior using
truncated command sequences. Experiments with six mas-
querade detection techniques [6]: Bayes one-step Markov,
Hybrid multi-step Markov, IPAM, Uniqueness,
Sequence-Match and Compression, were performed and
compared. Maxion and Townsend [7] applied the Naı̈ve
Bayes classification algorithm to detect masquerade based
on the same data. Lane and Brodley [8] proposed a learn-
ing algorithm for analyzing user shell command history to
build normal user behavior and detect anomalies. It
attempts to address the ‘‘concept drift’’ problem when
the normal user behavior changes. Recently Oka et al. [9]
used layered networks for masquerade detection based on
Eigen Co-occurrence Matrix (ECM).

In recent years, a lot of research activities focused on
learning program behavior and building profiles with sys-
tem call sequences as data sources. In 1996, Forrest et al.
[10] introduced a simple anomaly detection method called
time-delay embedding (tide), based on monitoring system
calls invoked by active and privileged processes. Profiles
of normal behavior were built by enumerating all fixed
length of distinct and contiguous system calls that occur
in the training data sets and unmatched sequences in actual
detection are considered anomalous. In subsequent
research, the approach is extended by various methods.
For example, Lee and Stolfo [11] used data mining
approach to study a sample of system call data and charac-
terize the sequences contained in normal data by a small set
of rules. The sequences violating those rules were then trea-
ted as anomalies for monitoring and detection purpose.
Warrender et al. [12] proposed a Hidden Markov Model
(HMM) based method for modeling and evaluating invisi-
ble events. This method was further studied by many other
researchers [13–16]. Wespi et al. [17] extended Forrest’s
idea and proposed a variable length approach. Asaka
et al. [18] developed an approach based on the discriminant
method in which an optimal classification surface was first
learned from samples of properly labeled normal and
abnormal system call sequences. The surface was then used
as a basis for deciding the normality of a new system call
sequence. Yeung and Ding [14] and Lee et al. [19] used
information-theoretic measures for anomaly detection.
Liao et al. [20] used K-Nearest Neighbor (K-NN) classifier
and Wu et al. [21] applied robust Support Vector Machines
(SVM) for intrusion detection based on system call data to
model program behavior and classified each process as nor-
mal or abnormal when it terminated. Cho [22] applied soft
computing techniques for anomaly detection. Our research
group [23] employed Rough Set Theory (RST) to learn and
model normal behavior with improved detection accuracy
while using much smaller size of training data sets. Our
research group has also developed another two intrusion
detection methods. One [24] is based on plan recognition
for predicting intrusion intentions by observing system
calls and the other [25] is based on Non-negative Matrix
Factorization (NMF) to profile program and user behav-
ior. Other methods or techniques, such as first-order Mar-
kov Chain Models [26], high-order Markov Models [27],
EWMA [28], Decision tree [29], Chi-Square [30] and Neu-
ral Networks [31] are also used for system call based intru-
sion detection.

In a multi-layered or multi-pronged IDS, monitoring
network traffic behavior is as important as monitoring pro-
gram behavior and user behavior. EMERALD [32] used
statistical anomaly detection modules to monitor network
traffic. Lee et al. [33,34] extracted features from network
data and built signature-based detection models. The
detection models generalized rules that classify the data
with the values of the extracted features. Liu et al. [35] pro-
posed a new Genetic Clustering (GC) based anomaly detec-
tion algorithm. The method can establish clusters and
detect network intrusions by labeling normal and abnor-
mal groups. Eskin et al. [36] proposed a geometric frame-
work for unsupervised anomaly detection and three
algorithms, Cluster, K-Nearest Neighbor (K-NN) and
Support Vector Machine (SVM), were used for classifica-
tion. Shyu et al. [37] proposed a Principal Component
Classifier (PCC) for network intrusion detection. They
measured the Mahalanobis distance of each observation
from the center of the data for anomaly detection. The
Mahalanobis distance is computed based on the sum of
squares of the standardized principal component scores.
Heywood et al. [38] used a hierarchical neural network
approach based on Self Organizing Maps (SOM) and
potential function clustering for network intrusion detec-
tion. Sarasamma et al. [39] proposed a multilevel Hierar-
chical Kohonenen Net (HKN) for anomaly network
intrusion detection. Each level of the hierarchical map is
modeled as a simple winner-take-all Kohonenen net. Other
methods, such as neural networks [40] and fusion of multi-
ple neural network classifiers [41], have also been applied
for network intrusion detection.

Although existing efforts in anomaly detection have
made impressive progress, there are still many issues to
be resolved. First, a computer system in daily operation
can produce massive data streams from various data
sources. Moreover, these sources of data are typically high
dimensional. For example, in collecting system calls of

60 W. Wang et al. / Computer Communications 31 (2008) 58–72
sendmail on a host machine, only 112 messages produced a
combined trace with the length of over 1.5 million system
calls [10]. Each trace of the data may contain about more
than 40 distinct system calls, resulting a high dimensional
data set. And in experiments carried out by MIT Lincoln
Lab for the 1998 DARPA evaluation [42], network traffic
over 7 weeks contains 5 GB of compressed binary tcpdump

data which were processed into about five million connec-
tion records. Similarly, the network data is high dimen-
sional as each network connection contains 41 features.
Given these figures, high speed processing of high dimen-
sional massive audit data in most cases is essential for a
practical IDS so that actions for response can be taken
as soon as possible.

However, many current anomaly detection models make
the implicit assumption that data is relatively low dimen-
sional, or only a small amount of data is used. This over-
simplification limits the effectiveness of these models. On
the other hand, many intrusion detection models require
too much time to train the models by processing a large
amount of data. For example, it took Hidden Markov
Models (HMM) approximately two months to train an
anomaly detection model with a large data set [12]. Since
computing environments change rapidly, an effective intru-
sion detection model should be periodically retrained to
achieve real-time self-adaptive intrusion detection. Spend-
ing too much time for training is clearly not adequate for
this purpose. Applicability on various data sources is
another issue. Many IDSs can only handle one particular
audit data source [33,34]. For example, system call based
intrusion detection methods may not be applied to other
sources of data, such as shell command data or network
data. Since activities at different penetration points are nor-
mally recorded in different audit data sources, an IDS often
needs to be extended to incorporate additional modules
that specialize on certain components (e.g., hosts, subnets,
etc.) of the network system [33]. Therefore, it is crucial to
develop and build a general framework that practical IDSs
can be implemented on various data sources.

An IDS is a recognition system in nature. To achieve
effective real-time anomaly intrusion detection, it is crucial
to choose and extract suitable features and to design effec-
tive classification algorithms. In practice, it is always a
challenge to choose features that best characterize behav-
ioral patterns of a subject (e.g., a program, a user or a net-
work element, etc.), so that abnormality can be clearly
distinguished from normal activities. In general, there are
three categories of attributes of activities in computer sys-
tems: the transition property, frequency property and cor-
relation property of audit events. These three properties of
audit events have been widely studied for intrusion
detection.

The intrusion detection methods considering the transi-
tion property of audit events extract the transition informa-
tion between the elements in the audit data. These methods
often use sliding windows to divide the data into short
sequences for data preparation. These methods include
[8,10–17,23,24] and [26,27] in the literature. The intrusion
detection methods taking into account the frequency prop-
erty of audit events compute the distribution of the audit
data. These methods do not focus on temporal variations
in the data. Some methods also use sliding windows to par-
tition the data into short sequences while other methods do
not for data preparation. These methods include
[3,5,7,14,20,21,25] in the literature. There are also intrusion
detection methods using the correlation property of audit
events. These methods capture the correlation information
embedded in the audit data. Ref. [9] is an example for cap-
turing the user behaviors by correlating not only connected
events but also events that are not adjacent to each other.

In this paper, we firstly conduct experiments to evaluate
the relationship between the performance of intrusion
detection and the properties of audit events which are con-
sidered. Comparative studies are then used as references to
choose suitable features of audit events for real-time intru-
sion detection. Hidden Markov Models (HMM) are usu-
ally used for modeling temporal variation in the data. We
then use this method to consider the transition property
of audit events for intrusion detection. In this paper, we
propose a Principal Component Analysis (PCA) method
to take into account the frequency property of audit events
for intrusion detection. We also compare the testing results
of PCA method with the results obtained by using HMM
method and ECM method considering the correlation
information of audit events.

The novelty of our work lies in the following three
aspects. First, the relationships between the performance
of intrusion detection and the properties of audit events
considered are evaluated. The evaluation results can be
used as an important reference for effective real-time intru-
sion detection. Second, the proposed PCA based intrusion
detection method can achieve real-time intrusion detection
based on dimensionality reduction and on a simple classi-
fier. Third, the proposed method can also serve as a general
framework that practical IDSs can be implemented in var-
ious environments based on its flexibility for processing
various kinds of data streams. The testing results show that
considering the frequency property of audit events is more
suitable for real-time intrusion detection, providing ade-
quate detection performance at low computational over-
head, comparing to using the transition and correlation
property of audit events. The PCA-based intrusion detec-
tion method is effective and suitable for high speed process-
ing of massive data streams from various data sources. In
this method, a multi-pronged intrusion detection model is
used to monitor various computer network behaviors and
three sources of data are used to validate the model and
the method. Empirical results show that the method is
promising in terms of detection accuracy and computa-
tional efficiency, and thus amenable for real-time intrusion
detection.

The remainder of this paper is organized as follows:
Section 2 describes the HMM method considering the tran-
sition properties and the related method using the correla-

W. Wang et al. / Computer Communications 31 (2008) 58–72 61
tion properties of audit events for intrusion detection. Sec-
tion 3 provides a brief introduction to PCA and describes
the proposed intrusion detection model using the frequen-
cies of audit events. Empirical results on three sources of
data are shown and analyzed in Section 4 to illustrate the
effectiveness and efficiency of the proposed method. The
concluding remarks follow in Section 5.

2. Intrusion detection methods based on the transition

properties and correlation properties of audit events

2.1. HMM-based intrusion detection method considering the

transition properties of audit events

HMMs are dynamic models widely used for considering
the transition property of events. An HMM describes a
doubly stochastic process. Each HMM contains a finite
number of unobservable (or hidden) states. Transitions
among the states are governed by a set of probabilities
called transition probabilities. An HMM defines two con-
current stochastic processes: the sequence of the HMM
states and a set of state output processes. Given an input
sequence of observations O(O1, � � �,Ot), an HMM can
model this sequence by three parameters – state transition
probability distribution A, observation symbol probability
distribution B and initial state distribution p [43,44]. There-
fore, a sequence can be modeled as k = (A,B,p) using its
characteristic parameters.

There are three central issues in HMMs including the
evaluation problem, the decoding problem, and the learn-
ing problem. Given an HMM model kand a sequence of
observations O(O1, � � �,Ot), the evaluation problem is to
evaluate P(O|k), the probability that the observations
are generated by the model. The decoding problem, on
the other hand, is to decide the most likely state sequence
that produced the observations. The learning problem is a
training process and therefore very important. It is
to maximize P(O|k) by adjusting the parameters of the
model k.

HMMs learning can be conducted by the Baum-Welch

(BW) or forward-backward algorithm – an example of a
generalized Expectation-Maximization (EM) algorithm
[45].

Standard HMMs have a fixed number of states, so we
must decide the size of the model before training. Previous
research indicates that a good choice for the application is
to choose a number of states roughly corresponding to the
number of distinct elements in the audit data [12]. The
number of the states therefore depends on the data set used
in experiments.

After the HMMs were learned on the training set of the
data, normal behavior is thus profiled by the parameters of
the HMMsk = (A,B,p).

Given a test sequence of the data (length S), we use a sliding
window of length L to move along the trace and get
(S � L + 1) short sequences of the dataOi(16 i 6 S �
L + 1).
Using the normal model k = (A, B,p) which was built
by the learning method described above, the probability
that a given observation sequence O is generated from
the model can be evaluated using the forward algorithm

[45]. In the experiments, we use log-probability log -
P(O|k) instead of P(O|k) to increase the scale of the
probability.

Ideally, a well-trained HMM can give sufficiently high
likelihood only for sequences that correspond to normal
behavior. Sequences that correspond to abnormal behav-
ior, on the other hand, should give significantly lower like-
lihood values [14]. The HMM based anomaly detection
method in this paper is based on this property.

Given a predetermined threshold ea with which we com-
pare the probability of a sequence O in a test trace, if the
probability is below the threshold, the sequence O is then
flagged as a mismatch. We sum up the mismatches and
define the anomaly index as the ratio between the numbers
of the mismatches and of all the sequences in the test trace.
The classification rule is thus assigned as following
equation:

Anomaly index

¼ Numbers of the mismatches

Numbers of all the sequences in the test trace
> eh ð1Þ

If (1) is met, then the trace embedding the test sequences is
considered as a possible intrusion. Otherwise it is consid-
ered as normal.
2.1.1. Data sets

In the experiments, we use system call data to evaluate
the HMM-based intrusion detection model. In this paper,
we do not consider the arguments to system calls that
would supply additional information (e.g., [46,47]). In
order to assess the model, we used two data sets in the
experiments for profiling program behaviors. One is lpr

data collected in MIT Lincoln Lab and also by Warrender
et al. [12]. The data set can be downloaded at http://
www.cs.unm.edu/�immsec and the procedures for generat-
ing the data are also described on the website. The data set
includes 2703 traces of normal data and 1001 traces of
intrusion data. We used the first 600 traces of normal data
and the first 300 traces of intrusion data in the experiments.

The other data set was collected in the actual system in
our KLINNS lab of Xi’an Jiaotong University. We
collected live ftp system call sequences on a Red Hat Linux
system with kernel 2.4.7-10, spanning a time period of
about 2 weeks. The normal data are traces of system calls
generated by authentic users with various conditions.
Intrusion traces are associated with exploitations against
a widely known Wu-Ftpd vulnerability [48], which allows
remote attackers to execute arbitrary commands on the
victim host. The ftp system call data generated in the
experiments includes 549 normal traces and six intrusion
traces. The statistics of the system call data used in the
experiments are shown in Table 1.

http://www.cs.unm.edu/
http://www.cs.unm.edu/

Table 1
Descriptions of system call data in the experiments

Data set Number of
system calls

Number of
distinct system calls

Number of normal
traces (processes)

Number of intrusion
traces (processes)

MIT lpr data 842,279 41 600 300
Live ftp data from KLINNS Lab 5,699,277 58 549 6

Table 3
The detection rates and false alarm rates of the two sets of system call data

Data set Window size ea eh (%) FAR (%) DR (%)

Lpr data 3 �32 2.48 5.5 100
�32 5.85 1.1 99.7

6 �40 3.16 2.3 100
�40 6.55 0.5 99.7

Live ftp data 3 �40 2.03 0 100
6 �70 4.07 0 100

62 W. Wang et al. / Computer Communications 31 (2008) 58–72
2.1.2. Testing results based on the HMM method

In the experiments, we group the system calls that are
invoked by the same process into one trace and classify
whether the process behavior is normal or not.

For lpr data, 200 traces of the normal data are randomly
selected for training and other data, 400 traces of the nor-
mal data and 300 traces of the intrusion data are used for
detection. For live ftp data, 70 traces of the normal data are
randomly selected for training and other data, 479 traces of
normal data and six traces of intrusion data are used for
detection. In the training set of the normal data, there
are 41 distinct system calls in lpr data and 58 distinct sys-
tem calls in live ftp data, respectively. We therefore use
41 states and 58 states of HMMs in the experiments for
profiling the program behavior of lpr and ftp accordingly.

In our experiments, each trace of the system call data is
first converted into short sequences of fixed lengths. We use
window sizes as 3 and 6, respectively, in the experiments for
comparison of the testing results. The average anomaly
indexes of the normal and intrusion traces of these two
data sets are calculated respectively and summarized in
Table 2 and the False Alarm Rates (FAR) and Detection
Rates (DR) are summarized in Table 3. The CPU time
required for training and detection of lpr data is also sum-
marized in next section for clear comparison with other
methods.

From Tables 2 and 3, it is observed that: (1) the anomaly
indexes of abnormal traces are significantly higher than
those of the normal data for both of the two data sets
and the HMM based method is thus an effective method
for intrusion detection. (2) Different window sizes result
in different anomaly indexes of each trace of the data. As
window size increases, the anomaly index corresponding
to the trace of the data tends to increase too. This is not
strange because a large sliding window contains more tran-
Table 2
The average anomaly indexes of normal and abnormal traces of the two
sets of system call data

System call sequences Anomaly indexes (%)

Window size = 3 Window size = 6

Lpr data
Intrusion 5.9524 10.3659
Normal 1.7736 1.8665

Live ftp data
Intrusion 11.42 16.25
Normal 0.1021 0.1978
sition information between the system calls and this is valu-
able for classification. The performance of the intrusion
detection is related to the window sizes and thus the choice
of window size should be addressed in practical IDSs.

2.2. The method considering the correlation properties of

audit events

There are few intrusion detection methods that consider
the correlation properties of audit events. Recently, Oka
et al. [9] proposed an Eigen Co-occurrence Matrix
(ECM) method correlating not only connected events but
also events that are not adjacent to each other while
appearing within a certain distance. Their method created
a so-called ‘‘co-occurrence matrix’’ by correlating a com-
mand in a sequence with any following commands that
appear within a certain distance. User behavior was then
built based on the ‘‘eigen co-occurrence matrix’’ created
by extracting principal features of the ‘‘co-occurrence’’.
The ECM method is typically an intrusion detection
method that considers the correlation property of audit
events. In this paper, we compare the testing results of this
method with those of our method.

3. The proposed intrusion detection method based on

Principal Component Analysis

3.1. Principal Component Analysis

Principal Component Analysis (PCA, also called Karh-
unen-Loève transform) is one of the most widely used
dimension reduction techniques for data analysis and com-
pression. It is based on transforming a relatively large num-
ber of variables into a smaller number of uncorrelated
variables by finding a few orthogonal linear combinations
of the original variables with the largest variance. The first
principal component of the transformation is the linear

W. Wang et al. / Computer Communications 31 (2008) 58–72 63
combination of the original variables with the largest vari-
ance; the second principal component is the linear combi-
nation of the original variables with the second largest
variance and orthogonal to the first principal component
and so on. In many data sets, the first several principal
components contribute most of the variance in the original
data set, so that the rest can be disregarded with minimal
loss of the variance for dimension reduction of the data
[45,51]. PCA has been successfully applied in many areas,
such as face recognition [50], image processing, text catego-
rization, gene expression analysis and so on. The transfor-
mation works as follows.

Given a set of observations be x1,x2, � � �,xn, suppose
each observation is represented by a row vector of length
m. The data set is thus represented by a matrixXn·m

X n�m ¼

x11 x12 � � � x1m

x21 x22 � � � x2m

� � � � � � � � � � � �
xn1 xn2 � � � xnm

2
6664

3
7775 ¼ x1; x2; � � � ; xn½ �

ð2Þ
The average observation is defined as

l ¼ 1

n

Xn

i¼1

xi ð3Þ

Observation deviation from the average is defined as

Ui ¼ xi � l ð4Þ
The sample covariance matrix of the data set is defined as

C ¼ 1

n

Xn

i¼1

ðxi � lÞðxi � lÞT ¼ 1

n
sumn

i¼1UiU
T
i ¼

1

n
AAT ð5Þ

where A = [U1,U2, � � �,Un].
Key
Host

Machine

Internet

Data Collectio

System Behavioral
stream

Network Behavioral
Stream

User Behavioral
Stream

System Call
Data

Network Data

Keystroke
Records

Shell
Command Dat

CPU time ,
Memory ...

File access

Fig. 1. A multi-p
To apply PCA, eigenvalues and corresponding eigenvec-
tors of the sample covariance matrix C are usually com-
puted by the Singular Value Decomposition (SVD)
theorem [51]. Suppose (k1,u1), (k2,u2), � � �, (km,um) are m

eigenvalue-eigenvector pairs of the sample covariance
matrix C. We choose k eigenvectors having the largest
eigenvalues. Often there will be just a few large eigenvalues,
and this implies that k is the inherent dimensionality of the
subspace governing the ‘‘signal’’ while the remaining
(m � k) dimensions generally contain noise [45]. The
dimensionality of the subspace k can be determined by [49].Pk

i¼1kiPm
i¼1ki

P a ð6Þ

where a is the ratio of variation in the subspace to the total
variation in the original space. If a is chosen as 99.9%, then
variation in the subspace spanned by the former k eigen-
vectors has only 0.1% loss of variation in the original space.
We form a m · k matrix U whose columns consist of the k

eigenvectors. The representation of the data by principal
components consists of projecting the data onto the k-
dimensional subspace according to the following rules [45].

yi ¼ U Tðxi � lÞ ¼ U TUi ð7Þ
3.2. Intrusion detection model based on PCA

In order to detect intrusions across-the-board, a typical
multi-pronged IDS is proposed and shown in Fig. 1.

In the multi-pronged IDS, the behaviors of a networked
computer system are monitored according to the impact
order of the attacks and divided into three prongs including
network behavior, user behavior and system behavior.
Usually various methods are required to process network
n

a

Command
anlyasis

CPU time ,
memory ... analysis

Keystroke
records analysis

Intrusion
alarms
report

Network
connection analysis

Data Analysis , Intrusion
Detection and Alarms Report

File access
analysis

System call
analysis

ronged IDS.

64 W. Wang et al. / Computer Communications 31 (2008) 58–72
packets, keystroke records, file system, command
sequences, system calls, etc., of audit data streams obtained
in the three prongs for intrusion detection.

In this paper, we propose a general framework for build-
ing intrusion detection models for a multi-pronged IDS.
This model is then tested in four experiments using three
sources of data: system call data, command data and net-
work connection data. Building the intrusion detection
model includes three steps: data preparation, dimension
reduction and feature extraction, and classification.

3.2.1. Data preparation

In data preparation, each source of the observation data
set is divided into smaller data blocks using a specified
scheme. For example, the system call data is divided by
processes, network data by connections and shell com-
mand data is divided into consecutive blocks with a fixed
length. Instead of using the transition information of the
data, we use the frequencies of system call data to charac-
terize program behavior and shell command data to char-
acterize user behavior. For network data, we use the
features extracted from a network connection to character-
ize network traffic behavior.

To clearly show the detailed data preparation step, we
give an example of the data preparation method for system
call data. The system calls invoked by the same process are
firstly grouped into one trace representing each process in
the data. For example, the system call sequence invoked
by the Process 7174 inlpr data are shown below.

Process ID: 7174
5 3 67 67 5 139 67 6 24 46 5 59 67 6 5 3 67 67 6 5 3 67 67 6

6 106 105 105 107 106 105 105 107 106 105 05 107 106 105
105 107 106 105 105 107 106 105 105 07 106 105 105 107
106 105 105 107 106 105 105 107 4 60 0 0 5 3 3 3 3 3 3 3
3 3 6 51 59 5 59 0 89 168 168 8 1 59 3 6 5 19 3 6 24 156
5 51 59 3 20 5 128 67 6 94 01 13 20 94 20 101 51 89 101
144 129 86 90 122 113 6 38 28 3 19 4 6 57 8 57 120 120 4
4 4 4 4 33 38 5 3 6 54 4 9 4 6 9 10 6 6 6 1 6 9 10 94 95 4

In this sequence, each system call is represented by a
number. The mapping between a system call number and
the actual system call name is given by a separate table.
For example, the number 5 represents system call ‘‘open’’,
the number 3 represents system call ‘‘read’’. Instead of
using short sequences of system calls used by most intru-
sion detection methods [10–18,23,24] and by the HMM
method proposed in Section 2.1, we use each trace of the
data as observation. In the Linux/Unix environment, exe-
cution of a program can generate one or more processes.
Each process produces a single trace of system calls from
the beginning of its execution to the end. Therefore, by
treating each trace of the data as observation, program
behavior can be profiled for anomaly detection. In each
trace of the data, the frequencies of individual system calls
are calculated. For example, the frequency of number 5 in
the process 7174 is 0.086. Each trace of system call data is
thus transformed into a data vector and the matrix repre-
senting a system call data set is shown below.
Suppose an observation data set is divided into n blocks,
and there are a total of m distinct elements (e.g., system call
data and command data) or features (e.g., network data) in
the data set. The observed data can be expressed by n vec-
tors with each vector containing m distinct observations. A
n · m Matrix X, where each element Xij stands for the fre-
quency of jth distinct element (e.g., system call data and
command data) or feature (e.g., network data) occurs in
the ith block, is then constructed. The observed data set
that is represented by a matrix Xn·m can be written as
Eq. (2), where row vectors x1,x2, � � �,xn represent the corre-
sponding blocks of the original data.

3.2.2. Dimension reduction and feature extraction

Given a training set of data vectors x1,x2, � � �,xn, the
average vector l and each mean-adjusted vector can be
computed by (3) and (4). m eigenvalue-eigenvector pairs
(k1,u1), (k2,u2), � � �, (km,um) of the sample covariance matrix
C are then calculated.

The size of principal eigenvectors u1, u2, � � �,uk(k > m),
used to represent the distribution of the original data, is
often determined by (6). Any data vector of the training
set can be represented by a linear combination of k eigen-
vectors so that the dimensionality of the data is reduced
and the features of the data are extracted.

3.2.3. Classification

A test data vectortwhich represents a test block of data
can be projected onto the k-dimensional subspace accord-
ing to the rules defined by (7). The distance between the
test data vector and its reconstruction in the subspace is
simply the distance between the mean-adjusted input data
vector U = t � l and

Uf ¼ UU Tðt� lÞ ¼ Uy ð8Þ
If the test data vector is normal, that is, if the test data

vector is very similar to the training vectors corresponding
to normal behavior, the test data vector and its reconstruc-
tion will be very similar and the distance between them will
be very small [49,50]. Based on this property, normal pro-
gram, user and network behaviors can all be profiled for
anomaly detection [52,53]. In the experiments presented
here, three measures, squared Euclidean distance ee, Cosine
distance ec and Signal-to-Noise Ratio (SNR) es, are used to
map the distance or similarity of these two vectors in order
to compare the testing results:

W. Wang et al. / Computer Communications 31 (2008) 58–72 65
ee ¼ kU�Ufk2 ð9Þ

ec ¼
UT Uf

kUkkUfk
ð10Þ

es ¼ 10 log
kUk2

kU�Ufk2

 !
ð11Þ

In anomaly detection, ee, ec and es are characterized as
anomaly indexes. If ee and ec are below or es is above a pre-
determined threshold, then the test data t is classified as
normal. Otherwise it is treated as anomalous.
4. Experiments and testing

In our experiments, we used four data sets (which
include three data sources), lpr system call data from the
University of New Mexico and ftp system call data from
the KLINNS lab of Xi’an Jiaotong University, shell com-
mand data from AT&T Research lab, and network connec-
tion data from MIT Lincoln Lab, to test the anomaly
detection model.
4.1. Experiments on system call data

4.1.1. Data sets

In order to facilitate the comparison, we use the same
system call data used for evaluating the HMM-based intru-
sion detection method in Section 2.1.
4.1.2. Testing results and analysis

The model gives good testing results. Fig. 2 shows the
detection results on the lpr data using the squared Euclid-
ean distance measure with 200 traces of data randomly
selected from normal data for training and another 700
traces for detection. It is clear that abnormal data can be
easily distinguished from normal data based on the anom-

aly index.
In the experiments, the ratioa, as defined in (6), is

selected as 99.9% and the testing results including Detec-
Fig. 2. Testing results on the lpr system call data. The y-axis represents the
anomaly index and x-axis represents the system call trace number. The stars
(*) in the gray shading stand for abnormal traces and the dots (d) with no
shading stand for normal traces. The y-axis is expanded for readability.
tion Rates (DR) and False Alarm Rates (FAR) are summa-
rized in Table 4 for comparison. It is observed that the
detection results are the best in terms of DR and FAR with
squared Euclidean distance measure. This is because PCA
in nature seeks a projection that best represents the original
data in a least-square sense. The results remain similar with
Cosine distance and SNR.

To evaluate the impact of the rate a defined in (6) on the
performance of the detection model, we conduct the testing
with 200 normal data traces for training and squared
Euclidean distance as anomaly index for anomaly detec-
tion. The testing results are shown in Table 5. It is seen that
the false alarm rate is the lowest when a = 99.92%. It
decreases first and then tends to increase with increase of
ratioa. When ratioais relatively small, the variance in the
data set cannot be adequately represented by the reduced
subspace. Some valuable information in the original data
may be discarded and this leads to relatively high false
alarm rates. On the other hand, when ratio a is large
enough and near to 100%, the reduced subspace contains
noise [45,51] that reduces the effectiveness of the intrusion
detection. Also, the threshold tends to be smaller and smal-
ler with increase of ratio aand this makes it difficult for
detection. With these testing results, we suggest to use
a = 99.9% for feature extraction and squared Euclidean
distance as anomaly index for anomaly detection in real
environments. It can reduce the data largely with good test-
ing result. We will also verify this suggestion with network
data in Section 4.3.

The model is also effective for system call data from our
KLINNS lab. Fig. 3 shows the testing results of our model
on the ftp system call data with 70 normal data traces for
training and another 485 data traces for testing, using
a = 99.9% and squared Euclidean distance measure. It is
seen that six intrusion traces are all detected without any
false alarms.

Comparing the testing results obtained by using PCA
method with those of the HMM method (shown in Tables
2 and 3), it is observed that HMM is a better method than
PCA in terms of detection accuracy on lpr data with win-
dow size 6. However, the detection accuracy of HMM on
Live ftp data is the same as that of PCA. The HMM
method detected all the intrusions with 2.3% false alarms
rate on lpr data and without false alarms on the Live ftp

data. On the other hand, while the PCA method success-
fully detected all the intrusions in the Live ftp data, it
reached at 2.8% false alarms rate on the lpr data. These
results show that focusing on the transition property of
audit events can achieve better detection accuracy than
focusing on that of the frequency property. However, using
frequency property of audit events can also yield satisfac-
tory results in intrusion detection.

Our method is computationally efficient. During the
detection stage, the squared Euclidean distance between a
test vector and its reconstruction onto the subspace is used
for detection. Calculations for each test block of data take
O(mk), where m is the dimension of each vector represent-

Table 4
Detection Rates (DR) and False Alarm Rates (FAR) with different distance or similarity measures

Squared Euclidean distance measure Cosine measure SNR

ee (·10�3) FAR (%) DR (%) ec FAR (%) DR (%) es FAR (%) DR (%)

0.273 2.8 100 0.983 10.3 100 49.830 10.3 100
1.200 0.5 99.7 0.989 4.5 99.7 38.791 4.5 99.7

Table 5
Detection Rates (DR) and False Alarm Rates (FAR) using different
dimensionality of reduced subspace

Dimensionality
of subspace k

Ratea (%) ee (·10�3) FAR (%) DR (%)

1 98.34 0.795 13.5 100
5.200 1.3 99.7

2 99.22 0.606 10.3 100
1.600 5.3 99.7

5 99.87 0.279 3.8 100
1.300 0.8 99.7

6 99.92 0.273 2.8 100
1.200 0.5 99.7

7 99.95 0.205 3 100
1.100 0.5 99.7

10 99.99 0.135 3.3 100
0.213 1.5 99.7

15 99.99 0.048 3.5 100
0.123 1 99.7

32 99.99a 6.3 · 10�6 3.75 100
35 99.99a 2.9 · 10�7 3.75 100
36 100 3.21 · 10�29 35 100
41 100 3.20 · 10�29 35 100

a Ratea here is very close to 100%.

Fig. 3. Testing results on the ftp system call data from our KLINNS Lab.
The y-axis represents the anomaly index and x-axis represents the system
call trace number. The stars (*) in the gray shading stand for abnormal
traces and the dots (d) with no shading stand for normal traces. The y-
axis is expended for readability. The y-axis is expanded for readability.

Table 6
Training and detection times with system call data

Method Number of
system calls
for training

CPU Time for
training (s)

Number of
system calls
for detection

CPU Time for
detection (s)

HMM 159,642 4632 682,637 949 (window
size = 3)
1662 (window
size = 6)

Tide 159,642 33 682,637 356
PCA 159,642 5 682,637 14

66 W. Wang et al. / Computer Communications 31 (2008) 58–72
ing each block of data and k is the number of principal
components used in the model. Experimental results show
that after the high-dimensional data is reduced, the original
data can be represented by the linear combination of only a
very small number of principle components without sacri-
ficing valuable information. In the experiments, for exam-
ple, the use of only six principle components out of 41
dimensions can represent the original data with less than
0.1% loss of the total variation. Therefore, the original data
can be largely reduced for intrusion detection and k is very
small. Because the subspace is low dimensional and the
classifier is simple, little computational effort is required
for the detection. Moreover, system resources could be lar-
gely saved for low dimensional data which are conveniently
stored and transmitted.

In the experiments, we evaluate the computational per-
formance of our PCA model in comparison with the
HMM method described in Section 2.1 and the tide method
reported in [10] in terms of training time for building the
models as well as test time for detection. The experiments
are conducted on a 2.4-GHz Pentium computer with
512 MB DDR memory and the testing results are shown
in Table 6. It is observed that only 5 s are required for
PCA method versus up to 4632 s for training the same size
of the data for HMM method. Tide is usually regarded as
an efficient method for real-time intrusion detection [12].
However, it takes about 33 s for training, requiring more
time than our PCA model. The results on detection times
are consistent with those on the training time. The HMM
method required about 949 s for detecting about 600 thou-
sands system calls with window size as 3. By comparison,
our PCA model only requires about 14 s versus about
356 s in the tide method for the same size of data.

Based on the comparative studies of these two intrusion
detection methods discussed above, it shows that utilizing
the transition property of audit events can produce a good
detection performance only at high computational expense.
Relying on the frequency property of events, on the other
hand, is very suitable for real-time intrusion detection, pro-
viding adequate detection performance at very low compu-

Fig. 4. Testing result of User 24. The y-axis represents the anomaly index

and x-axis represents command block number. The stars (*) in the gray
shading indicate simulated masquerades data and dots (d) with no
shading stand for normal data.

Fig. 5. Testing results of the combined data of user 5 and user 32. The y-
axis represents the anomaly index and x-axis represents command block
number. All the data blocks of user 5 and 32 are uncontaminated,
therefore the first 100 data blocks from user 5 are treated as normal (d)
and blocks 101–250 from user 32 are considered as abnormal (*) with gray
shading.

W. Wang et al. / Computer Communications 31 (2008) 58–72 67
tational overhead. PCA method, considering the frequency
property of the audit events, is thus very suitable for pro-
cessing massive audit data streams for real-time intrusion
detection. Most current intrusion detection methods con-
sidering the transition property of events firstly divide
sequences of system calls by a fixed length of sliding win-
dow for data preparation. Detection performance is shown
to be sensitive to window size [54]. As window size
increases, the detection performance improves, but only
at considerable computational expense. Moreover, the
question of how to choose the window size has not been
sufficiently addressed. The PCA method takes into account
the frequency property of system calls. Processes are con-
sidered as observation. It then avoids deciding the size of
sliding windows which are often chosen by experience. In
the PCA method, each process is represented by a data vec-
tor, where each entry is the frequency of a distinct system
call during the execution of a process. In this way, the
anomaly intrusion detection problem is transformed into
the simpler problem of classifying these vectors as normal
or abnormal. PCA method uses a simple classifier and
can achieve a good real-time detection performance.

4.2. Experiments on shell command data

4.2.1. Data sets

The shell command data that comes from a UNIX ser-
ver at AT&T’s Shannon Research Laboratory are used for
testing. User names and associated command sequences
(without arguments) make up the testing data available
at http://www.schonlau.net/intrusion.html. Fifty users are
included with 15,000 consecutive commands for each user
divided into 150 blocks of 100 commands. The first 50
blocks are uncontaminated and used as training data.
The masquerading command blocks, randomly drawn
from outside of the 50 users, are inserted into the command
sequences of the 50 users in the rest 100 blocks. The details
of the contamination procedure can also be found on the
website.

The goal of the experiments is to correctly detect mas-
querading blocks. Each data block of a user is transformed
into a vector which contains the frequencies of individual
commands embedded in the block. A test data vector rep-
resenting a data block of a user is then used as data input
for anomaly detection by (8) and (9).

4.2.2. Testing results and analysis
We conduct the experiments on the 50 users and the test-

ing results of most users are promising. The testing results
on User 24 are shown in Fig. 4 as an example. It is
observed that simulated masquerade data are located at
Blocks 69–89 with gray shading in Fig. 4 and our model
can easily catch them all.

To use much data for evaluating the detection and com-
putational performance of the model, we reconstruct the
data for profiling one user behavior for anomaly detection
in the experiments. We randomly select two data sets of
two users. The first 50 data blocks of the first user are used
for training and rest 100 data blocks of the first user are
considered as normal and 150 blocks of the second user
as abnormal. User 5 and user 32 are selected in the
experiments.

We use a = 99.9% and squared Euclidean distance as
anomaly index for anomaly detection in the experiments
and the testing results are shown as Fig. 5. Table 7 shows
the CPU times required for the training and detection for
Fully- Connected HMMs (FC-HMM), Left-to-Right
HMMs (LR-HMM), and CE (Cross Entropy) method
reported in [14] and ECM method reported in [9] and our
PCA method. FC-HMM and LR-HMM methods are
based on the transition property of audit events and
ECM method is based on the correlation information of
audit events while CE method and our PCA method are
based on the frequency property of audit events. Our
method is tested on a computer with 2.4 GHz Pentium

http://www.schonlau.net/intrusion.html

Table 7
Training and detection times with shell command data

Method Number of shell commands
for training

CPU time
for training (s)

Number of shell commands
for detection

CPU time
for detection (s)

FC-HMM 10,826 32,696 10,981 20
LR-HMM 10,826 33,532 10,981 12
CE 10,826 0 10,981 14
ECM 250,000 50,444 100 22.15
PCA 10,000 6 11,000 5

68 W. Wang et al. / Computer Communications 31 (2008) 58–72
CPU and 512 DDR MB memory and ECM method was
tested on a workstation with 3.2 GHz CUP and 4 GB
memory [9] while the other two methods were tested on
an UltraSPARC 30 workstation [14].

From Fig. 6, it is seen that the abnormal data can be
100% distinguished from the normal data without any false
alarms by using our model. It is also observed from Table 7
that our method is much faster than the FC-HMM, LR-
HMM and ECM methods in training, while the CE
method does not require training time. The detection time
of our method is also faster than other four methods. This
shows that considering correlation information of audit
events is as much computational costly as using those of
the transition property. Taking account of the frequency
property of audit events, on the other hand, require low
overload not only for training but also for detection. It is
thus suitable for processing of massive data streams for
real-time intrusion detection.
4.3. Experiments on network data

4.3.1. Data sets

The network data used for testing is distributed by
MIT Lincoln Lab for 1998 DARPA evaluation [42]. The
data contains traffic in a simulated military network that
Fig. 6. ROC curves for different ratios a used in the network intrusion
detection experiments.
consists of hundreds of hosts. The data includes 7 weeks
of training set and 2 weeks of test set that were not from
the same probability distribution as the training set. Since
the probability distribution is not the same, in our exper-
iments, we only use the training set and sample one part of
the data for training and another different part of the data
for testing. The raw training set of the data contains about
4 GB of compressed binary tcpdump data of network traf-
fic and it was pre-processed into about 5 million connec-
tion records by Lee et al. [33,34] as part of the UCI
KDD archive [55]. A connection is a sequence of TCP
packets starting and ending at some well defined times,
between which data flows from a source IP address to a
target IP address under some well defined protocol [55].
In the 10% subset data, each network connection is
labeled as either normal, or as an exactly one specific kind
of attack.

There are 22 types of attacks in total in the subset.
These attacks fall in one of the following four
categories:

• DOS: denial-of-service (e.g., teardrop).
• R2L: unauthorized access from a remote machine (e.g.,

password guessing).
• U2R: unauthorized access to local superuser (root) priv-

ileges by a local unprivileged user (e.g., buffer overflow
attacks).

• PROBE: surveillance and other probing (e.g., port
scanning).

A connection of the network data contains 41 features.
These features were extracted by Lee et al. from the raw
data divided into three groups: basic features of individual
TCP connections, traffic features and content features
within a connection suggested by domain knowledge
[33,34]. Among these 41 features, 34 are numeric and 7
are symbolic. Only the 34 numeric features were used in
the experiments. Each connection in the data set is thus
transformed into a 34-dimensional vector as data input
for detection. There are 494,021 connection records in
the training set in which 97,277 are normal and 396,744
are attacks. In the normal data, we randomly selected
7000 connections for training the normal model and
10,000 for detection. All the attack data are used for detec-
tion. The data descriptions in the experiments are shown in
Table 8.

Fig. 8. ROC curves for four categories of attack data and overall data.

Table 8
Descriptions of network data in the experiments

Data
category

Total number of network
connections

Number of network
connections used

Normal 97,277 7000 for training
1000 for testing

Attack
DOS 391,458 391,458
R2L 1126 1126
U2R 52 52
PROBE 4107 4107

W. Wang et al. / Computer Communications 31 (2008) 58–72 69
4.3.2. Testing results and analysis

In the experiments, we use Receiver Operating Charac-
teristic (ROC) curves to evaluate the network intrusion
detection performance of our model. The ROC curve is
the plot of DR against FAR. There is a tradeoff between
the DR and FPR and the ROC curve is obtained by setting
different threshold on the anomaly index defined by (8). To
further investigate the impact of the ratio a defined in (6)
on the performance of the intrusion detection model, we
also use different number of principal components in the
experiments and the testing results of overall data are
shown in Fig. 6. In the experiments, only one principal
component can account for 90.079% of the total variation
and two principal components can account for that of
99.953%. From the ROC curve shown in Fig. 6, it is
observed that the testing results are related to the ratio a.
The testing results are the best when the ratio is about
99.9% and this consists with our previous results on system
call data discussed in Section 4.1.

Testing results on all the network data are shown in
Fig. 7. To investigate the performance of our model on dif-
ferent categories of attack data, we conduct the experi-
ments on each category of the attack data. Fig. 8 shows
the ROC curves of the detection performance of our model
on four categories of attack data as well as overall data.

From Fig. 7 and the ROC curves shown in Fig. 8, it is
observed that our model is able to detect most attacks with
Fig. 7. Testing results of all the network data. The y-axis represents the
anomaly index and x-axis represents the network connection number. The
stars (*) in the gray shading stands for attack connections and the dots (d)
stand for normal connections. The y-axis is compressed for readability.
low false alarm rates. In more details, our model can detect
very high percentage of DOS and U2R attacks with a small
number of R2L and PROBE attacks missed.

To evaluate the performance of our method and com-
pare with different methods, we summarize the DR and
FAR of the four attack categories as well as the overall
in Table 9 in comparison with other five methods reported
in [35–37]. In the experiments, we also measure the CPU
times for training and detection on a computer with
2.4 GHz Pentium CPU and 512 DDR MB memory shown
in Table 10.

In the experiments, we used randomly selected normal
data of the training set for establishing normal behavior
and used nearly all the other data in the same set for detec-
tion. The GC method [36] also used the training set both
for training and detection but only with a very small part
of the data. In the Cluster, K-NN and SVM methods
[37], many attack data are filtered so that the resulting data
set consisted of 1% to 1.5% attack and 98.5–99% normal
instances for unsupervised anomaly detection. The PCC
method [35] used the same data set as ours both for train-
ing and detection but also with a smaller data size. From
Table 9, it can be seen that our model is better than the
other first four methods in terms of detection rates and
false alarm rates. The DM method [33,34], HKN method
[39] and SOM method [38] used both the normal data
and attack data of the training set for defining attack signa-
tures or for building detection models and used the test set
for detection. The DM method achieved an 80.2% detec-
tion rate and HKN method achieved 93.46% detection rate
at 3.99% false alarm rate while SOM method obtained 89%
detection rate at 4.6% false alarm rate.

The detection performance of the PCC method is almost
the same as our PCA model. The PCC method measured
the Mahalanobis distance of each observation from the
center of the data for anomaly detection. Any observation
that has distance larger than a threshold is considered as an
anomaly. The Mahalanobis distance is then computed
based on the sum of squares of the standardized principal
component scores. The PCC method used both principal

Table 9
The Detection Rates (DR) and False Alarm Rates (FAR) in comparison with other methods

Methods Overall DoS R2L U2R Probe

DR(%) FAR(%) DR(%) FAR(%) DR(%) FAR(%) DR(%) FAR(%) DR(%) FAR(%)

GC (Liu) [35] 59.4 0.4 56 – 66 – 78 – 44 –
Cluster (Eskin) [36] 93 10 – – – – – – – –
K-NN (Eskin) [36] 91 8 – – – – – – – –
SVM (Eskin) [36] 98 10 – – – – – – – –
PCC (Shyu) [37] 97.89 0.92 – – – – – – – –
PCA 98.8 0.4 99.2 0.2 94.5 4 88.5 0.6 80.7 4

Table 10
Training and detection times with network data

Data category Training Testing (Note that each category of attack data includes 10,000 normal network connections
for anomaly detection)

Normal data DOS attack R2L attack U2R attack PROBE attack

Number of network
connections

7000 401,458 11,126 10,052 14,107

CPU time (s) 36 658 0.33 0.25 0.45

70 W. Wang et al. / Computer Communications 31 (2008) 58–72
components and minor components of the sample in the
detection stage. Our PCA method directly reduces the high
dimensional data into low dimensional space and use the
distance between each observation and its reconstruction
in the reduced subspace for anomaly detection. Only prin-
cipal components are required to form the subspace and
the detection scheme is straightforward and easy to handle.
The PCC method used five principal components and 6–7
minor components in the experiments while our PCA
method only used two principal components and achieved
better detection results. The PCC method assumes that the
sum of squares of several standardized principal compo-
nent follows a v2 distribution. Our model avoids any data
distributional assumption and can be more practical for
application.

In the experiments, our model is evaluated on 10,000
normal network connections and all the attack connec-
tions. Thus over 400,000 network connections are included.
It can be observed from Table 10 that training and detec-
tion are very efficient. For example, less than 1 second is
required for detecting about 15,000 network connections.
This shows that our model is suitable for real-time anomaly
detection on network data.

5. Concluding remarks

In this paper, we present an effective anomaly intrusion
detection model based on Principal Component Analysis
(PCA). The model is more suitable for high speed process-
ing of massive data streams in real-time than use of transi-
tion property or correlation property. In our model, the
data block for a process, command or network connection
is associated with a data vector representing the frequencies
or other extracted features of individual elements in the
data block. Large amounts of data are thus significantly
reduced. The anomaly intrusion detection problem is con-
verted into classifying these vectors as normal or abnormal.
The detection model provides a general framework for
establishing a practical IDS in various environments. It
can process many sources of audit data such as system call,
UNIX command, network data, etc., of large size, applica-
ble to a broad range of anomaly intrusion detection.

Data used in intrusion detection problems are high
dimensional in nature. Our model applies PCA to reduce
the high dimensionality of the data. The anomaly index

of a data block is represented as a single number as the
Euclidean distance between the data vector and its recon-
struction in the reduced subspace so that normal behavior
is easily profiled and anomaly detection is easily imple-
mented without any additional classifier. It is thus an effec-
tive model to process a mass of audit data in real-time with
low overhead and is suitable for real-time intrusion
detection.

It is possible for a hacker to escape detection by not let-
ting the process terminate. However, the model can still be
made effective for real-time anomaly detection. An attack
usually produces one or more programs and each program
produces one or more processes. If one process is detected
as anomalous, the program containing the process is then
classified as anomalous and an intrusion alarm is thus
reported. Besides, to avoid this situation, one can specify
a maximum length of system calls in each process, for
example, length of 1500 [25], and then only use the limited
length of the system call sequence for detection without
reaching the end of the process.

There are also disadvantages for the models based on
the frequency property of the system behavior such as
PCA. If frequencies of system calls or commands generated
by a hostile program or an unauthentic user are very sim-
ilar to those produced by normal programs or authentic

W. Wang et al. / Computer Communications 31 (2008) 58–72 71
users although the sequences are quite different, PCA can
hardly detect the anomalies. The other methods based on
the transition or correlation analysis may detect such
anomaly without difficulty.

Four data sets, the system call data from UNM and our
KLINNS lab, the shell command from AT&T Research
lab and network data from MIT Lincoln Lab, are used
to validate the model. Extensive experiments are conducted
to test our model and to compare with the results of many
other methods. Testing results show that the model is
promising in terms of detection accuracy, computational
efficiency and implementation for real-time intrusion detec-
tion. For further work, we are investigating approaches to
combining the frequencies properties with the transition
properties and correlation information of the system and
network behavior in order to achieve lower false alarm
rates and higher detection rates.

Acknowledgements

We thank Dr. Weixiang Liu, Graduate School at Shenz-
hen, Tsinghua University, for the fruitful suggestions and
comments. We thank Ms. Mizuki Oka, Department of Com-
puter Science of University of Tsukuba, Japan, for the valu-
able discussions. The research presented in this paper was
supported in part by the NSFC (60736027, 60574087), 863
High Tech Development Plan (2007AA01Z475,
2007AA04Z154, 2007AA01Z480, 2007AA01Z464) and 111
International Collaboration Program, of China.

References

[1] D.E. Denning, ‘‘An intrusion-detection model’’, IEEE Transactions
on Software Engineering 13 (2) (1987) 222–232.

[2] S.E. Smaha, Haystack: An intrusion detection system, in: Proceedings
of the IEEE Fourth Aerospace Computer Security Applications
Conference, 1988.

[3] T. Lunt, A. Tamaru, F. Gilham, R. Jagannathan, P. Neumann, H.
Javitz, A. Valdes, T. Garvey, A real-time intrusion detection expert
system (IDES) – final technical report, Technical report, Computer
Science Laboratory, SRI International, Menlo Park, California,
February 1992.

[4] D. Anderson, T. Frivold, A. Valdes, Next-generation intrusion
detection expert system (NIDES): a summary. Technical Report
SRI-CSL-95-07, Computer Science Laboratory, SRI International,
Menlo Park, California, May 1995.

[5] M. Schonlau, M. Theus, Detecting masquerades in intrusion detec-
tion based on unpopular commands, Information Processing Letters
76 (2000) 33–38.

[6] M. Schonlau, W. Dumouchel, W.-H. Ju, A.F. Karr, M. Theus, Y.
Vardi, Computer intrusion: detecting masquerades, Statistical Science
16 (1) (2001) 58–74.

[7] R.A. Maxion, T.N. Townsend, Masquerade detection using truncated
command lines, Proceedings of the International Conference on
Dependable Systems and Networks (DSN’02), IEEE Computer
Society Press, Washington, D.C., Los Alamitos, California, 2002,
pp. 219–228.

[8] T. Lane, C.E. Brodley, Temporal sequence learning and data
reduction for anomaly detection, in: Proceedings of Fifth ACM
Conference on Computer and Communication Security, 1998.

[9] M.Oka, Y. Oyama, H. Abe, K. Kato, Anomaly detection using
layered networks based on eigen co-occurrence matrix, in: Proceed-
ings of Seventh International Symposium on Recent Advances in
Intrusion Detection (RAID’2004), Springer, LNCS-3224, 2004, pp.
223–237.

[10] S. Forrest, S.A. Hofmeyr, A. Somayaji, T.A. Longstaff, A sense of
self for Unix processes, in: Proceedings of the 1996 IEEE Symposium
on Research in Security and Privacy, Los Alamos, CA, 1996, pp. 120–
128.

[11] W. Lee, S. Stolfo, Data mining approaches for intrusion detection, in:
Proceedings of the Seventh USENIX Security Symposium, Usenix
Association, 1998, pp.79–94.

[12] C. Warrender, S. Forrest, B. Pearlmutter, Detecting intrusions using
system calls: alternative data models, in: Proceedings of 1999 IEEE
Symposium on Security and Privacy, 1999, pp.133–145.

[13] Q. Yan, W. Xie, B. Yan, G. Song, An anomaly intrusion detection
method based on HMM, Electronics Letters 38 (13) (2002) 663–664.

[14] D.Y. Yeung, Y. Ding, Host-based intrusion detection using dynamic
and static behavioral models, Pattern Recognition 36 (1) (2003) 229–
243.

[15] S.B. Cho, H.J. Park, Efficient anomaly detection by modeling
privilege flows using hidden Markov model, Computers and Security
22 (1) (2003) 5–55.

[16] W. Wang, X. Guan, X. Zhang, Modeling program behaviors by
hidden markov models for intrusion detection, in: Proceedings of the
Third International Conference on Machine Learning and Cybernet-
ics (ICMLC’2004), 2004, pp. 2830–2835.

[17] A. Wespi, M. Dacier, H. Debar, Intrusion detection using variable-
length audit trail patterns, in: Proceedings of the Third International
Workshop on the Recent Advances in Intrusion Detection
(RAID’2000), LNCS-1907, 2000.

[18] M. Asaka, T. Onabuta, T. Inoue, S. Okazawa, S. Goto, A new
intrusion detection method based on discriminant analysis, IEICE
Transactions on Information and Systems E84D (5) (2001) 570–577.

[19] W. Lee, D. Xiang, Information-theoretic measures for anomaly
detection, in: Proceedings of the 2001 IEEE Symposium on Security
and Privacy, Oakland, CA, May 2001.

[20] Y.H. Liao, V.R. Vemuri, Use of k-nearest neighbor classifier for
intrusion detection, Computers and Security 21 (5) (2002) 439–448.

[21] W. Hu, Y. Liao, V.R. Vemuri, Robust support vector machines for
anomaly detection in computer security, in: Proceeding of the 2003
International Conference on Machine Learning and Applications
(ICMLA’03), Los Angeles, California, 2003.

[22] S.B. Cho, Incorporating soft computing techniques into a probabi-
listic intrusion detection system, IEEE Transactions on Systems,
Man, and Cybernetics – Part C 32 (2) (2002) 154–160.

[23] Z. Cai, X. Guan, P. Shao, Q. Peng, G. Sun, A rough set theory based
method for anomaly intrusion detection in computer networks,
Expert Systems 18 (5) (2003) 251–259.

[24] L. Feng, X. Guan, S. Guo, Y. Gao, P. Liu, Predicting the intrusion
intentions by observing system call sequences, Computers and
Security 23 (5) (2004) 241–252.

[25] W. Wang, X. Guan, X. Zhang, Profiling program and user behaviors
for anomaly intrusion detection based on non-negative matrix
factorization, in: Proceedings of 43rd IEEE Conference on Control
and Decision (CDC’2004), Atlantis, Paradise Island, Bahamas, 2004,
pp. 99–104.

[26] N. Ye, Y. Zhang, C.M. Borror, Robustness of the Markov chain
model for cyber attack detection, IEEE Transactions on Reliability 53
(1) (2004) 116–121.

[27] W.-H. Ju, Y. Vardi, A hybrid high-order Markov chain model for
computer intrusion detection, Journal of Computational and Graph-
ical Statistics 10 (2) (2001) 277–295.

[28] N. Ye, Q. Chen, Computer intrusion detection through EWMA for
auto-correlated and uncorrelated data, IEEE Transactions on Reli-
ability 52 (1) (2003) 73–82.

[29] N. Ye, X. Li, Q. Chen, S.M. Emran, M. Xu, Probabilistic techniques
for intrusion detection based on computer audit data, IEEE Trans-
actions on Systems, Man, and Cybernetics – Part A 31 (4) (2001) 266–
274.

72 W. Wang et al. / Computer Communications 31 (2008) 58–72
[30] N. Ye, Q. Chen, An anomaly detection technique based on a chi-square
statistic for detecting intrusions into information systems, Quality and
Reliability Engineering International 17 (2) (2001) 105–112.

[31] A.K. Ghosh, A. Schwartzbard, M. Schatz, Learning program
behavior profiles for intrusion detection, in: Proceedings of the First
USENIX Workshop on Intrusion Detection and Network Monitor-
ing, 1999, pp. 51–62.

[32] P.A. Porras, P.G. Neumann, EMERALD: Event Monitoring
Enabling Responses to Anomalous Live Disturbances, in: Proceed-
ings of National Information Systems Security Conference, Balti-
more, MD, 1997.

[33] W. Lee, S. Stolfo, K. Mok, A data mining framework for adaptive
intrusion detection, in: Proceedings of the 1999 IEEE Symposium on
Security and Privacy, Los Alamos, CA, 1999, pp. 120–132.

[34] W. Lee, S. Stolfo, A Framework for constructing features and models
for intrusion detection systems, ACM Transactions on Information
and System Security 3 (4) (2000) 227–261.

[35] Y. Liu, K. Chen, X. Liao, et al., ‘‘A genetic clustering method for
intrusion detection’’, Pattern Recognition 37 (5) (2004) 927–942.

[36] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, S. Stolfo, A Geometric
framework for unsupervised anomaly detection, Applications of Data
Mining in Computer Security, Kluwer Academics, Dordrecht, 2002.

[37] M. Shyu, S. Chen, K. Sarinnapakorn, L. Chang, A novel anomaly
detection scheme based on principal component classifier, in:
Proceedings of the IEEE Foundations and New Directions of Data
Mining Workshop, in conjunction with the Third IEEE International
Conference on Data Mining (ICDM’2003), 2003, pp. 172–179.

[38] H. Kayacik, A. Zincir-Heywood, M. Heywood, On the capability of
an SOM based intrusion detection system, in: Proceedings of the
IEEE International Joint Conference Neural Networks
(IJCNN’2003), 2003, pp. 1808–1813.

[39] S.T. Sarasamma, Q.A. Zhu, J. Huff, Hierarchical Kohonenen net for
anomaly detection in network security, IEEE Transactions on
Systems, Man and Cybernetics, Part B 35 (2) (2005) 302–312.

[40] S.C. Lee, D.V. Heinbuch, Training a neural-network based intrusion
detector, IEEE Transactions on Systems man and Cybernetics 31 (4)
(2001) 294–299.

[41] G. Giacinto, F. Roli, L. Didaci, Fusion of multiple classifiers for
intrusion detection in computer networks, Pattern Recognition
Letters 24 (5) (2003) 1795–1803.

[42] MIT Lincoln Laboratory-DARPA Intrusion Detection Evaluation
Documentation, <http://www.ll.mit.edu/IST/ideval/docs/docs_index.
html>, 1999.

[43] L.R. Rabiner, A tutorial on hidden Markov models and selected
applications in speech recognition, Proceedings of the IEEE 77 (2)
(1989).

[44] L.R. Rabiner, B.H. Juang, An introduction to hidden Markov
models, IEEE ASSP Magazine (1986).

[45] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second ed.,
China Machine Press, Beijing, 2004, Feb.

[46] C. Kruegel, D. Mutz, F. Valeur and G. Vigna, On the detection of
anomalous system call arguments, in: Eighth European Symposium
on Research in Computer Security (ESORICS’2003), LNCS, Nor-
way, 2003, pp. 101–118.

[47] D. Mutz, F. Valeur, C. Kruegel, G. Vigna, Anomalous system call
detection, ACM Transactions on Information and System Security 9
(1) (2006) 61–93.

[48] CERT Advisory CA-2001-07 File, Globbing Vulnerabilities in
Various FTP Servers, <http://www.cert.org/advisories/CA-2001-
07.html>, 2001.

[49] I.T. Jolliffe, Principal Component Analysis, second ed., Springer-
Verlag, NY, 2002.

[50] M. Turk, A. Pentland, Eigenfaces for recognition, Journal of
Neuroscience 3 (1) (1991) 71–86.

[51] G.H. Golub, C.F. van Loan, Matrix Computation, Johns Hopkins
University Press, Baltimore, 1996.

[52] W. Wang, X. Guan, X. Zhang, A novel intrusion detection method
based on principal component analysis in computer security, in:
Advances in Neural Networks-ISNN2004. International IEEE Sym-
posium on Neural Networks, Dalian, China. LNCS-3174, August
2004, pp. 657–662.

[53] W. Wang, R. Battiti, Identifying intrusions in computer networks with
principal component analysis, in: Proceedings of the First International
Conference on Availability, Reliability and Security (ARES 2006),
IEEE Press Society, Vienna, Austria, April 2006, pp. 270–277.

[54] K.M.C. Tan, R.A. Maxion, Why 6? Defining the operational limits of
stide, an anomaly-based intrusion detector, in: Proceedings of 2002
IEEE Symposium on Security and Privacy, 2002, pp. 188– 201.

[55] KDD Cup 1999 Data, <http://www.kdd.ics.uci.edu/databases/kdd-
cup99/kddcup99.html>, 1999.

Wei Wang (wei.wang.email@gmail.com) received
his B.S. degree in process equipment and control
engineering and M.S. degree in mechanical and
electronic engineering from Xi’an Shiyou Univer-
sity, Xi’an, China, in 1997 and 2000, respectively,
and his Ph.D. Degree in Control Science and
Engineering from Xi’an Jiaotong University,
Xi’an, China, in 2005. He was a research fellow
from July 2005 to February 2006 and a postdoc-
toral research fellow from February 2006 to July
2006 in Department of Information and Commu-

nication, University of Trento, Italy. He is a postdoctoral research fellow in
RSM department at GET-ENST Bretagne - Campus Rennes, France in

2007 and will join INRIA (French National Institute Research in Computer
Science and Control), France, in 2008. His research interests currently focus
on computer networked systems and computer network security.

Xiaohong Guan (xhguan@tsinghua.edu.cn)
received his B.S. and M.S. degrees in Control
Engineering from Tsinghua University, Beijing,
China, in 1982 and 1985, respectively, and his
Ph.D. Degree in Electrical Engineering from the
University of Connecticut in 1993. He was a senior
consulting engineer with PG&E from 1993 to 1995.
From 1985 to 1988 and since 1995 he has been with
the Systems Engineering Institute, Xi’an Jiaotong
University, Xi’an, China, and currently he is the
Cheung Kong Professor of Systems Engineering

and Director of the National Lab for Manufacturing Systems. He is also the
Chair of Department of Automation and Director of the Center for Intel-

ligent and Networked Systems, Tsinghua University, China. He visited the
Division of Engineering and Applied Science, Harvard University from
January 1999 to February 2000. He is an IEEE fellow. His research interests
include computer network security, wireless sensor networks and economics
and security of complex networked systems.

Xiangliang Zhang (xlzhang@lri.fr) received her
B.S. Degree in Information and Communication
Engineering and M.S. Degree in Electronic
Engineering from Xi’an Jiaotong University,
Xi’an, China, in 2003 and 2006, respectively. She
was an internship student in Department of
Information and Communication, University of
Trento, Italy, from February 2006 to May 2006.
She is currently a Ph.D. student in Laboratoire de
Recherche en Informatique, mixed with French
National Institute for Research in Computer

Science and Control (INRIA), National Center for Scientific Research
(CNRS) and University of Paris-sud 11, France. Her research interests

include network security, machine learning, data mining and their appli-
cations, e.g., computer security, complex system modeling and grid
management.

http://www.ll.mit.edu/IST/ideval/docs/docs_index.html
http://www.ll.mit.edu/IST/ideval/docs/docs_index.html
http://www.cert.org/advisories/CA-2001-07.html
http://www.cert.org/advisories/CA-2001-07.html
http://www.kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://www.kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	Processing of massive audit data streams for real-time anomaly intrusion detection
	Introduction
	Intrusion detection methods based on the transition properties and correlation properties of audit events
	HMM-based intrusion detection method considering the transition properties of audit events
	Data sets
	Testing results based on the HMM method

	The method considering the correlation properties of audit events

	The proposed intrusion detection method based on Principal Component Analysis
	Principal Component Analysis
	Intrusion detection model based on PCA
	Data preparation
	Dimension reduction and feature extraction
	Classification

	Experiments and testing
	Experiments on system call data
	Data sets
	Testing results and analysis

	Experiments on shell command data
	Data sets
	Testing results and analysis

	Experiments on network data
	Data sets
	Testing results and analysis

	Concluding remarks
	Acknowledgements
	References

